Catalytic conversion of lignin-derived, monomeric platform molecules to value-added chemicals

Gyula Novodárszki, József Valyon, Magdolna R. Mihályi Research Centre for Natural Sciences

Project meeting
"Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border region"

Interreg, SKHU/1902/4.1/001/Bioeconomy

Faculty of Chemical and Food Technology STU in Bratislava Radlinského 9, 812 37 Bratislava, Slovak Republic

28 September, 2022

Lignocellulose as source of carbon and energy

Current carbon and energy resources

Structure of lignocellulose

Chem. Soc. Rev. 41 (2012) 8075

chemical/thermal depolymerization

Lignin Chem. Rev. 110 (2010) 355

Bio-oxygenates

Guaiacol-based chemicals

> Products from GUA could replace the materials of fossil origin

Reaction pathways of guiacol hydrodeoxygenation

C-O linkages

DHO: Dehydroxylation; AL: Transalkylation DMO: Demethoxylation; DDO: Direct deoxygenation;

DME: Demethylation;

Objectives:

- to convert GUA to value-added materials
- to elucidate the pathways of product formation
- optimization of HDO catalysts

ChemCatChem 4 (2012) 64; ACS Catal. 3 (2013) 1774; App. Cat. A 512 (2016) 93; App. Cat. B 270 (2020) 118890

OH HYD

Catalyst preparation

Catalyst	Precursor	Support
Ni/Al ₂ O ₃	Ni(NO ₃) ₂)·6H ₂ O	γ–Al ₂ O ₃ (Alfa Aesar)
Ni/Al ₂ O ₃ (P)	Ni(NO ₃) ₂)·6H ₂ O	γ-Al ₂ O ₃ (Alfa Aesar) impregnated with H ₃ PO ₄ solution, dried and calcined (550 °C, 4h)

> Impregnation: metal salt solution

> Calcination: 450 °C, 4h

➤ In situ reduction: 450 °C, 2h, H₂

> Catalytic experiments were carried out in a continuous flow-through fixed-bed microreactor

Catalyst characterization

Metal and P content; Specific surface area (SSA)

Supports and catalysts	Metal content wt%	P content wt%	SSA m²/g
Al ₂ O ₃	-	-	196
$5Ni/Al_2O_3$	5.21	-	192
20Ni/Al ₂ O ₃	19.87	-	190
$Al_2O_3(P)$	-	4.85	167
5Ni/Al ₂ O ₃ (P)	5.06	4.82	165
20Ni/Al₂O₃ (P)	20.12	4.82	131

- ➤ Metal impregnation has no influence on SSA
- ➤ Impregnation of Al₂O₃ support with H₃PO₄ solution reduces SSA

X-ray diffraction (XRD)

- $ightharpoonup \gamma$ -Al₂O₃ is the only detectable phase of catalysts with low metal loading (NiO crystallites are well dispersed on the Al₂O₃ surface)
- ➤ The XRD pattern of 20Ni/Al₂O₃ and 20Ni/Al₂O₃(P) catalysts show the reflections of NiO (NiO particle size was about 30 nm)

Surface structure of phosphated γ-alumina

FT-IR spectra in the vOH region (ev. 450 °C, 1 h)

Phosphoric acid reacts with the hydroxyls of alumina

monomeric and polymeric phosphate species are formed^a

OH groups (G. Busca, Cat. Today 226 (2014) 2.)

 γ -Al₂O₃

- 3770 cm⁻¹, □-O-Al^{IV}-OH, (terminal)_{tetr} with vacancy
- 3728 cm⁻¹, Al^{VI}-OH, (terminal)_{oct} without and with vacancy
- 3673 cm⁻¹, Al-O(H)-Al, bridged
- 3588 cm⁻¹, triple-bridged

 γ -Al₂O₃(P)

- 3791 cm⁻¹, Al^{IV}-OH, (terminal)_{tetr}
- 3676 cm⁻¹, P-OH on phosphates

^aA. Stanislaus, M. Absi-Halabi, K. Al-Doloma et al., Appl. Cat. 39 (1988) 239; A. Vikár, H.E. Solt, Gy. Novodárszki et al., Journal of Catalysis 404 (2021) 67

Catalysts acidity and reducibility

FT-IR spectra of adsorbed pyridine

- ➤ On the Al₂O₃ (P) support the intensity of bands at 1450, 1455 cm⁻¹ and 1615, 1624 cm⁻¹ is lower lower Lewis acidity
- ➤ Phosphorus modification reduces the Lewis acidity of the alumina support

Temperature-programmed reduction (H₂-TPR)

- ➤ The degree of reduction at 450 °C:
 - $-5Ni/Al_2O_3 \sim 4.5 \% \text{ of Ni (H/Ni=0.09)}$
 - $-5Ni/Al_2O_3(P) \sim 0.5\% (H/Ni=0.01)$
 - $-20Ni/Al_2O_3 \sim 68\% (1.37 H/Ni)$
 - $-20\text{Ni/Al}_2\text{O}_3$ (P) $\sim 65\%$ (1.3 H/Ni)

Activity of 20Ni/Al₂O₃ catalyst

- > The catalyst activity did not change with TOS
- ➤ O-free compounds were mainly formed at 300 °C

- ➤ At 225 °C CHL-s appear in the product mixture
- With temperature the yield of benzenes increased

Activity of 5Ni/Al₂O₃ catalyst

- ➤ The catalyst activity did not change with TOS
- ➤ O-free compounds were mainly formed at 300 °C

- ➤ At 225 °C cyclohexanols were the main products
- With temperature the yield of benzenes increased

Activity of Al₂O₃ and Al₂O₃ (P) supports

- ➤ Demethylation (DME) and transalkylation (AL) are the main reactions
- > CAT derivatives are the main products
- ➤ Demethoxylation (DMO) and dehydroxylation (DHO) also takes place
- > PHE derivatives were also formed

Activity of 20Ni/Al₂O₃(P) catalyst

- ➤ The catalyst selectivity change in funcion of TOS
- ➤ Phenols were formed on modified 20Ni/Al₂O₃(P) catalyst
- > Catechols also appear in product mixture

➤ The amount of PHE derivatives increased with temperature

Activity of 5Ni/Al₂O₃(P) catalyst

➤ Catechols were formed on modified 5Ni/Al₂O₃(P) catalyst

The amount of PHE derivatives increased with temperature

Conclusions

- ✓ The sequential steps of GUA hydrodeoxygenation can be controlled by modifying the alumina support.
- ✓ Demethylation of GUA on Al_2O_3 and phosphorous modified $Al_2O_3(P)$ supports leads to catechol formation.
- ✓ Ni/Al₂O₃ catalyzed hydrodeoxygenation of GUA to O-free compounds like cyclohexane.
- ✓ At lower temperature cyclohexanols were formed in large amounts.
- \checkmark Ni/Al₂O₃(P) catalysts are selective to aromatics (phenols, catechols).
- ✓ At higher temperature phenols were the main products.
- ✓ Ni/Al₂O₃(P) catalysts remain active in demethylation and demethoxylation, but lose their ability to hydrogenate the aromatic ring. (weaker interaction between substrate molecules and phosphated support)

Thank you for your kind attention!

Acknowledgement

European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconomy) www.skhu.eu

Building Partnership

www.ttk.hu/palyazatok/bioeconomy